一件工作,甲乙合作6天可以完成,乙丙合作10天可以完成.如果甲丙合作3天后,由乙单独做,还要9天才能完成.如果全部工作由3人合作,需几天可以完成?

一件工作,甲乙合作6天可以完成,乙丙合作10天可以完成.如果甲丙合作3天后,由乙单独做,还要9天才能完成.如果全部工作由3人合作,需几天可以完成?


设总量为1
则甲乙每天完成量 :甲+乙=1/6 乙丙每天完成量 :乙+丙=1/10 
甲丙合作3天后,由乙单独做9天完成可知:(甲+丙)x3+乙x9=1
即(甲+乙)x3+(乙+丙)x3+3乙=1 
把前面甲+乙=1/6 乙+丙=1/10代入可求得乙每天单独完成量 乙=1/15
那么甲每天完成甲=1/6-1/15=1/10 丙每天完成1/10-1/15=1/30
全部工作由3人合作需1/(1/10+1/15+1/30)=5


乙单独做需要:

(9-3-3)÷【1-(1/6+1/10)×3】
=3÷【1-4/5】
=3÷1/5
=15天
甲乙丙合作需要:
1÷(1/6+1/10-1/15)
=1÷1/5
=5天


一件工作,甲乙合作6天完成,乙丙合作10天完成,甲丙合作3天,乙再做12天也可以完成,乙独做多少天可以完成?

①乙的工作效率:
[1-(

1
6
×3+
1
10
×3)]÷(12-6),
=[1-
4
5
]÷6,
=
1
30

②乙独做需要的天数:
1÷
1
30
=30(天).
答:乙独做30天可以完成.
发布了430 篇原创文章 · 获赞 415 · 访问量 925万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览